
I took differential equations in the winter of my first year at
McGill. I absolutely loved that class and spent a lot of time after
class talking to the professor and spending time learning other
aspects of this field of math. One day, we learned about the Frobenius
method of solving diff-eqs. Curious, I looked up what I could apply
the method to, and found the Bessel Function. I tried deriving the
function and wrote up my work below.

Let's analyze Bessel's equation. It's common to refer to the parameter
p as the order of the equation.:

x2y′′ + xy′ + (x2 − p2)y = 0

To start, let's get this in standard form by dividing by x2:
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This should be ringing some alarm bells with x in the denominator, as
x = 0 makes this undefined. So we say x0 = 0 is a singular point. Let's
check if it's regular by checking x Q

P  and x2 R
P  :

x
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These are both analytic functions and are well defined for all x in R.
Notice that this means x = 0 is a regular singular point.
The next step in analyzing this ODE is to find the roots of the
indicial equation. Recall the indicial equation is defined as
F(r) = r(r − 1) + b0r + c0 = 0 Using the expressions from x Q

P  and x2 R
P , we get

the expansions:
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x2 R

P
= −p2 + 0x + x2 + (0)O(x3)

From these, we can see that b0 = 1 and c0 = −p2 and the only other non-
zero coefficient is c2 = 1. Let's plug this back into our indicial
equation and solve for the roots.

F(r) = r(r − 1) + r − p2

= r2 − r + r − p2

r2 − p2 ⇒ r = ±p

For this example, we're only going to take r = p but the process for
r = −p is the same. Let's calculate the first few coefficients using
the method of frobenius:
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F(n + p)
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ak[(k + p)bn−k + cn−k]
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Hopefully you've noticed a pattern here. The general term of an is
given by

an =
−an−2

F(n + p)

However, we can simplify this quite nicely by noticing that all the
odd coefficients depend on a1 which is identically equal to 0. So we
can reindex to only take the odd indicies and evaluate our function
F(n + p):

a2n =
−a2n−2

4n(n + p)

Let's find the first few terms explicitly:

a2 =
−a0

4 ∗ 1(1 + p)



a4 =
−a2

4 ∗ 2 ∗ (2 + p)
=

(−1)2a0

422 ∗ 1(1 + p)(2 + p)

⋮

a2n =
(−1)ka0

4kk!(1 + p) … (2 + p)

To simplify our calculations, we introduce the gamma function, which
is a generalized factorial where Γ(x + 1) = x!:

Γ(x) = ∫

∞

0
e−ttx−1dt

We'll replace that in our expression to get:

a2n =
(−1)ka0

4kΓ(k + 1)Γ(k + p + 1)

To get the Bessel function, we'll take a0 = 1
2pΓ(p+1) :
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4k2pΓ(k + 1)Γ(k + p + 1)

When we plug this into our series solution y(x), we get
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∞
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2
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And thus we have arrived at the Bessel function of the first kind,
normally denoted by J1(x):
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As you can see, this is a pretty complicated function, but it has some
nice practical uses. For example, it can be used to model vibrations
in a circular drum. It's also useful for solving a whole host of ODEs
in cylindrical coordinates and is a key part of the solution to the
wave equation in cylindrical coordinates. Overall, it's a pretty cool
function and I'm glad I fell down the Wikipedia rabbit hole to learn
about it.


